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ABSTRACT

The popularity of similarity search expanded with the
increased interest in multimedia databases, bioinformat-
ics, or social networks, and with the growing number
of users trying to find information in huge collections
of unstructured data. During the exploration, the users
handle database objects in different ways based on the
utilized similarity models, ranging from simple to com-
plex models. Efficient indexing techniques for similarity
search are required especially for growing databases.

In this paper, we study implementation possibilities of
the recently announced theoretical framework SIMDEX,
the task of which is to algorithmically explore a given
similarity space and find possibilities for efficient index-
ing. Instead of a fixed set of indexing properties, such
as metric space axioms, SIMDEX aims to seek for alter-
native properties that are valid in a particular similarity
model (database) and, at the same time, provide efficient
indexing. In particular, we propose to implement the
fundamental parts of SIMDEX by means of the genetic
programming (GP) which we expect will provide high-
quality resulting set of expressions (axioms) useful for
indexing.

1. INTRODUCTION

The content-based retrieval is widely used in vari-
ous areas of computer science including multimedia
databases, data mining, time series, genomic data,
social networks, medical or scientific databases, bio-
metric systems, etc. In fact, searching collections of
a priori unstructured data entities requires a kind
of aggregation that ranks the data as more or less
relevant to a query. A popular type of such a mech-
anism is the similarity search where, given a sample
query object (e.g., an image), the database searches
for the most similar objects (images). Two unstruc-
tured objects represented by their descriptors are
compared by a similarity function, which produces
a single numerical score interpreted as the degree of
similarity between the two original objects.

For a long time, the database-oriented research
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(b) Protein similarity

(a) Image similarity
Figure 1: Sample similarity models

of similarity search employed the definition of sim-
ilarity restricted to the metric space model with
fixed properties of identity, positivity, symmetry,
and especially triangle inequality, using metric ac-
cess methods for indexing [2, 20, 14].

Together with the increasing complexity of data
types across various domains, recently there ap-
peared many similarities that were not metric —
we call them nonmetric or unconstrained similarity
functions [17]. As the nonmetric similarity func-
tions are not constrained by any properties that
need to be satisfied (unlike the metric ones), they
allow to better model the desired concept of sim-
ilarity and therefore lead to more precise retrieval
(see Fig. 1a for a robust matching using local image
features).

Also nonmetric similarities allow to design models
that cannot be formalized into a closed-form equa-
tion. They could be defined as heuristic algorithms
such as an alignment or a transformational proce-
dure, while the enforcement of metric axioms could
be very difficult or even impossible. As an exam-
ple (see Fig. 1b), consider alignment algorithms for
measuring functional similarity of protein sequences
[18] or structures [8].

However, usually just the database experts are
concerned with the existence of specific properties
in a similarity function, as the properties enable the
ways how to index the database for efficient similar-
ity search. But database experts usually do not in-
vestigate the applicability of their techniques to spe-
cific domains. On the other hand, there are much



larger domain expert communities of different kinds
— people who use specialized similarity search appli-
cations and are ready to apply any method in order
to get expected results. These experts typically do
not care about the indexing techniques or perfor-
mance issues to a certain extent, so enforcement of
any indexing-specific properties in their similarity
functions is out of their expertise. For them, the
best approach is to use the simplest (possibly ineffi-
cient) database methods as they are easy to imple-
ment. However, in long term and with large-scale
databases, the efficiency will become a critical fac-
tor for choosing suitable similarity search methods.

Based on the different interests of database and
domain research communities, the main goal of our
research is to find a complex solution that provides
the various domain experts with a database tech-
nique that allows effective similarity search yet that
does not require any database-specific intervention
to the generally unconstrained similarity models. In
the following text, we shortly summarize previous
attempts to unconstrained (nonmetric) similarity
search before we sketch the idea of how to apply
genetic programming for this purpose.

2. MOTIVATION

It is not always easy for domain experts to invent
a perfect similarity measure, mostly represented as
a distance (dissimilarity) function ¢, and use it ef-
ficiently for large-scale databases with no compro-
mise. The general way how to efficiently search is
to use the lowerbounding principle — instead of com-
puting expensive distances between a query object
and all database objects a cheaper lowerbounding
function LB is applied to filter the irrelevant ones.

The first lowerbounding approach might be to
meet requirements of the metric space model by
modifying the similarity model. Then a lowerbound
function LB utilizing the triangle inequality is used

6(q;0) = LBA(8(g,0)) = |6(q,p) — d(p,0)| (1)

for query ¢, pivot (reference) object p, and database
object o. However, such a transformation might
spoil the benefits of the original model.

So, the next option is to use an indirect varia-
tion of the model leveraging the known mapping ap-
proaches such as TriGen [15] which ”converts” the
nonmetric similarities into metric ones and, again,
the metric model might be used. However, this is
not always the best-case scenario as it might lead to
either large retrieval error or low indexability [17].

Hence, there appeared some alternative methods
of database indexing for unstructured data, such as
the Ptolemaic Indexing [9, 11]. Here, the Ptolemy’s
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inequality is used to construct lowerbounds. It states
that for any quadrilateral, the pairwise products of
opposing sides sum to more than the product of the
diagonals. So, for any four database objects z, vy,
u, v € D, we have:

0(x,v)0(y,u) < d(x,y)-0(u,v)+d(x,u)d(y,v) (2)

For Ptolemaic lowerbounding L Bpto1 with a given
set of pivots P, the bound d¢ derived from (2) is
maximized over all pairs of distinct pivots [9, 11]:

5(q7 0) > LBptol(§(q7 O)) = pH;aé)%P 60 (Q7 o,p, S) (3)

The ptolemaic indexing was successfully used with
the signature quadratic form distance [11] that is
suitable for effective matching of image signatures [1].
The idea of ptolemaic indexing shows that finding
new indexing axioms could be a solution to speed-
up similarity search in other way than mapping the
problem to the metric space model.

3. RELATED WORK

We acknowledge that ”lowerbounding problem”
has been studied widely from various perspectives
but as we found out this is true mostly for specific
domains such as text or information retrieval (IR).
For example, the recent paper [4] discusses axioms
or constraints useful for term-weighting functions
but it is limited to IR, while in [12] authors try
to overcome improper lowerbounds with a new suf-
ficiently large lowerbound for term frequency nor-
malization (hardly applicable outside IR area).

Another work [13] reveals dynamic pruning strate-
gies based on upper bounds to quickly determine
the dissimilarity between an object and a query and
thus quickly filter out objects; again designed for IR
domain only.

Next, the definitions of axioms and constraints for
similarity functions used in text retrieval systems
are studied in [7], but the author provides only the
theoretical background.

Interestingly, there exists a framework that pro-
vides an axiomatic approach for developing retrieval
models [6]. It searches the spaces of candidate re-
trieval functions with the aim of finding the one
that satisfies specific constraints. Although our ap-
proach might look the same, there are significant
differences from our work. Particularly because au-
thors are strongly connected to IR as they assume
”bag-of-terms” representation of objects and they
create retrieval functions inductively with respect
to specific retrieval criteria. Most importantly, they
focus on modeling the relevance rather than devel-
oping efficient database indexing techniques.
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So, a general method that provides a correct lower-
bound for any domain has not been identified yet.
And here we see the great potential for our research
— to create and deliver a dataset-driven framework
that is able to find lowerbounds for any given sim-
ilarity space. This will then result in the efficient
indexing method applicable to any domain.

4. SIMDEX FRAMEWORK

Our work outlines an alternative approach to sim-
ilarity indexing motivated by the Ptolemaic index-
ing. Instead of ”forcing” the distance and/or data
to comply with the metric space model, for some
datasets it could be more advantageous to employ
completely different indexing model that provides
cheap construction of lowerbounds. We intend to
replace expensive distance computations between
all pairs of objects by a cheaper lowerbounding func-
tion that filters out the non-interesting objects.

Therefore our major research goal is to develop a
robust algorithmic framework for dataset-driven au-
tomatic exploration of axiom spaces for efficient and
effective similarity search at large scale. We already
described the SIMDEX framework and sketched a
high-level overview (see Fig. 2) of the framework’s
stages (the inner components) in [16]. In that pre-
liminary study, we designed only the theoretical
concept while in this work, we verified our thoughts
and clarify our vision with future steps.

4.1 Concept of SIMDEX Framework

As the input we consider a distance matrix for
a database sample (S) computed with a black-box
distance function (&). This matrix consists of a set
of values obtained by computing pair-wise distances
between objects in the sample — it is our ”mining
field”. The resulting output is a set of expressions
(so called azioms) valid in the given similarity space
that might be used for effective similarity search.

Using the basic idea of iteratively constructing
and testing the expressions against the distance ma-
trix, we are able to algorithmically explore axiom
spaces specified in a syntactic way. This approach
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does not use a single canonized form and a tuning
parameter, as other mapping approaches or the al-
gorithm TriGen do. As the result, we will be able to
discover the existing lowerbounding forms such as
triangle inequality (Eq. 1) or Ptolemy’s inequality
(Eq. 3) as two instances in the axiom universe.

Moreover, since the resulting set of axioms (an-
alytical properties) will be obtained in their lower-
bounding forms, they can be immediately used for
filtering purposes in the same way as ptolemaic in-
dexing was implemented [11].

4.2 Framework Overview

In this section, we briefly introduce and describe
the framework stages but for more details about
particular components, we refer readers to our ini-
tial study in which the architecture and the method-
ology are described properly [16].

As the initial step, we use the grammar theory to
create a grammar definition G based on which the
expressions are subsequently generated. The gen-
erated expressions are in the standardized form of
d(q,0) > LB, where LB will be expanded to vari-
ous forms. Expressions cannot be computationally
too expensive to evaluate and always include (-, p),
where pivot p is a fixed reference point.

Because the grammar-based generating of expres-
sion leads to an infinite universe, we limit the set
of tested inequalities by (a) using the signatures of
expressions that exclude various forms of the same
expression (i.e., fingerprints), and (b) discarding
meaningless expressions such as 7, —z, ...

After we generate candidate expressions, they are
tested against the precomputed distance matrix. As
we require 100% precision, only such expressions are
valid for which all tests are evaluated as TRUE.

To further condense the number of expressions
we could refine the result by discarding weaker ex-
pressions or combining expressions into a compound
expression, so only the best expressions will remain.

The last (indexing) step directly verifies the fea-
sibility of the resulting set of expressions/axioms in
practice within sample indexing tasks and validates
the filtering power of each expression. We focus on
the pivot table [2, 20] as it could be immediately
used as an indexing structure for any kind of lower-
bound expressions that involve pivots.

Although we optimize all stages, the exhaustive
computation is still in place. Therefore, we as-
sume massive parallelization of the exploration pro-
cess leveraging classic multi-core CPU systems with
multi-threading. For the future, we consider Map-
Reduce technique [5] applied to a CPU farm or to
a supercomputer architecture with lots of cores.
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4.3 Preliminary results

After the naive implementation of all individual
framework stages, we applied the prototype to the
real-world datasets focusing on nonmetric similarity
models in which metric postulates used for indexing
and querying produced notable errors. This step
validates our theoretical concept and as a proof we
present convincing preliminary results.

Using a sample database (consisting of 25 ob-
jects), we tested CoPhIR! dataset with nonmetric
Lo.5 distance and color histograms from Corel Im-
age Features® dataset using nonmetric Jeffrey Di-
vergence distance measure [17]. We verified the out-
comes (resulting axioms) on indexing processes with
Pivot Table [20] while studying the precision com-
pared to results of sequential scan (SEQ), number
of distance 4(-,-) computations (DCs) as the basic
efficiency measure, and average speedup.

The best result for CoPhIR was the expression

§(q,0) > Triangle***(8,q,p,0) = |3(g,p)—5(p, 0)|""%°

which does not dominate in number of DCs (Fig. 3)
but it clearly produces no errors (Fig. 4) together
with 1.1x speedup vs. SEQ scan.

"http://cophir.isti.cnr.it/
*http://goo.gl/SaOms
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For Corel, we found the following expressions
#18690  6(q,0) > Triangle(3,q,p,0) = |8(q,p) — 8(0, p)I?
#18906  4(q,0) = (6(¢, p1) — 6(0,p1)) - (6(q, p2) — 6(0,p2))

While the squared triangle inequality (#18690) is
only slightly more precise than triangle LB (Fig. 6),
we achieved an enormous success with the next ex-
pression (#18906) — 99.8% precision together with
1.2x speedup compared to sequential scan. Al-
though LBA still dominates in the number of DCs
(Fig. 5), it produces notable error rates (up to 59%).

4.4 Challenges

With the implemented prototype, we verified the
feasibility of our concept; however, there appeared
few issues that we need to overcome in order to pro-
vide a real and viable end-to-end solution. Namely,
we need to address following challenges:

m Expression Generation — The basic concept
of generating expressions iteratively covers all
expressions (which is the advantage), however,
a complex axiom valid in the given space could
take enormous time to be revealed.

m Expression Similarity — Despite using the
fingerprinting, we still struggle with testing
only unique expressions and skipping the var-
ious forms of the similar ones, as there are in-
finite forms of how to express a single math
expression.
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m Expression Testing — We have to compro-
mise between a large number of expressions to
be tested and a bigger sample size. Testing
the whole sample does not have to be always
appropriate and we might take only some in-
teresting objects from the sample.

m Verifying indexing model — To validate that
resulting axioms could be used for indexing
purposes, we run a separate indexing process
on the data outside the sample which is correct
but time-consuming.

5.  GENETIC PROGRAMMING VISION

In order to improve and extend the framework
capabilities and to overcome mentioned challenges
(see Section 4.4), we propose using genetic program-
ming (GP) as the main driver of generating and
testing expressions. The concept of GP is not new
and has been studied for several years since one of
the first inspiring books was published [10]. In gen-
eral, GP applies evolutionary patterns to a partic-
ular problem to achieve a specific goal using opera-
tions such as selection, crossover, or mutation [3].

We expect that GP-based approach will give the
real power to the purely theoretical SIMDEX Frame-
work (i.e., it will "materialize the theory”), will
boost the efficiency of axiom discovery and speedup
the axiom exploration process. Applying the prin-
ciples of natural expression evolution will then lead
to faster axiom resolution. Maybe we will not find
all axioms valid in the given space but this is not
our primary goal. In the first phase, we concentrate
on detecting at least some axioms that will increase
the efficiency of the indexing/filtering process.

5.1 GP-based SIMDEX Framework

Using GP-based method within the axiom explo-
ration requires several customizations of individual
framework stages. For this purpose, we propose and
design the next generation of SIMDEX Framework
(Fig. 7) which is how we perceive our future re-
search. Connecting the existing theoretical concept
together with GP-based algorithms (which will en-
rich it with the real and applicable context) we will
gain a powerful tool for axiom exploration.

Our vision and the real motivator is, that given
arbitrary user-defined similarity space, we will be
able to find valid axioms within a reasonable and
acceptable time frame. And we strongly believe
GP-based components will help us to achieve this.
Essentially, the novel GP-based axiom exploration
process will address highlighted challenges with

m Initial Population - After we create the ini-
tial population with the existing expression
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Figure 7: GP-based SIMDEX Framework

generator, additional expressions will be gen-
erated by the evolution algorithms which we

expect will lead to ”good” axioms early enough.

We will consider two variants: iteratively and
randomly built sets.

m Evaluate - This stage partially corresponds to
Expression Testing, however we need to take
into account several fitness functions to choose
from such as (a) complete testing of a smaller
distance matrix, (b) sampling n-tuples from
a medium distance matrix, or (c) imitating a
pivot-based search on a large distance matrix,
which will give us better scalability of results.

m GP-based operations (Select, Mutate, Re-
combine) - Based on the evaluation results,
we will select the most promising expressions
and add them to the next generation. Some
of them will be modified (mutated) or recom-
bined with others (i.e., the crossover of expres-
sion trees) in order to boost their efficiency
and find better expressions. During this stage,
we need to test expression similarities and for
this purpose, we consider applying a similarity
measure to find similarities in expression trees
(e.g., tree edit distance [15]) together with our
previously proposed fingerprinting method.

We see the great potential in creating multiple
generations of expressions based on the feedback
from the evaluation, so we can try to modify the
expressions to improve their efficiency accordingly.
Depending on results, we will handle the mutation
and recombination processes either in a completely
random way, or there will be some logic behind to
improve specific parts of an expression (modifying
specific nodes in the expression tree).

The availability of multiple fitness functions gives
us the opportunity to study expressions’ behavior
in different testing environments and potentially to
come up with special characteristics of expressions
and their suitability for specific datasets.

Another advantage is that GP has been studied
and applied widely to lots of different areas and
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there exists multiple options of how to perform each
operation — sampling, recombination, or mutation,
in order to obtain the next generation [19]. There-
fore we can pick the method that will be mostly
related and suitable to mathematical expressions.

6. CONCLUSION AND FUTURE WORK

With the preliminary implementation of purely
theoretical SIMDEX Framework, we are able to
demonstrate how to deal with the efficiency of simi-
larity search in nonmetric spaces in other way than
forcing the domain experts to implant and use met-
ric postulates in their similarity models. Based on
the results, we conclude that our framework is ca-
pable of finding alternative ways of indexing that
speed up high-precision similarity queries.

However, to achieve this within an acceptable
time frame and to find interesting axioms, we need
to optimize it dramatically. For this purpose, we
push our framework towards evolutionary algorithms
(e.g., genetic programming). Doing so, we expect to
explore the search space of all possible expressions
more effectively and to have good results quickly.
This method could provide better outcomes in terms
of query efficiency/effectiveness for complex non-
metric similarity models. In the metric spaces, our
solution will just provide a solid alternative to qual-
itatively dominating state-of-the-art techniques.

7. ACKNOWLEDGMENTS

This research has been supported by Grant Agency
of Charles University (GAUK) projects 567312 and
910913 and by Czech Science Foundation (GACR)
project 202/11/0968.

8. REFERENCES

[1] C. Beecks, M. S. Uysal, and T. Seidl.
Signature quadratic form distance. In Proc.
ACM International Conference on Image and
Video Retrieval, pages 438-445, 2010.

[2] E. Chédvez, G. Navarro, R. Baeza-Yates, and
J. L. Marroquin. Searching in metric spaces.
ACM Comp. Surveys, 33(3):273-321, 2001.

[3] N. L. Cramer. A representation for the
adaptive generation of simple sequential
programs. In Proc. of the 1st Int. Conf. on
Genetic Algorithms, pages 183-187. L.
Erlbaum Associates Inc., USA, 1985.

[4] R. Cummins and C. O’Riordan. An axiomatic
comparison of learned term-weighting schemes
in information retrieval: clarifications and
extensions. Artif. Intell. Rev., 28:51-68, 2007.

[5] J. Dean and S. Ghemawat. MapReduce:
simplified data processing on large clusters. In

10

Proc. of the 6th conf. on Symp. on Oper.
Systems Design & Impl., USA, 2004.

[6] H. Fang and C. Zhai. An exploration of
axiomatic approaches to information retrieval.
In SIGIR, pages 480-487. ACM, 2005.

[7] R. K. France. Weights and Measures: an
Axiomatic Approach to Similarity
Computations. Technical report, 1995.

[8] J. Galgonek, D. Hoksza, and T. Skopal. SProt:
sphere-based protein structure similarity
algorithm. Proteome Science, 9:1-12, 2011.

[9] M. L. Hetland. Ptolemaic indexing.
arXiv:0911.4384 [cs.Ds], 2009.

[10] J. R. Koza. Genetic programming. MIT Press,
Cambridge, MA, USA, 1992.

[11] J. Loko¢, M. Hetland, T. Skopal, and
C. Beecks. Ptolemaic indexing of the signature
quadratic form distance. In Similarity Search
and Applications, pages 9-16. ACM, 2011.

[12] Y. Lv and C. Zhai. Lower-bounding term
frequency normalization. In Proc. of the 20th
ACM Int. Conf. on Information and
knowledge management, CIKM ’11, pages
7-16, New York, NY, USA, 2011. ACM.

[13] C. Macdonald, N. Tonellotto, and I. Ounis.
On upper bounds for dynamic pruning. In
Proc. of the 8rd Int. Conf. on Advances in
information retrieval theory, ICTIR’11, pages
313-317. Springer-Verlag, 2011.

[14] H. Samet. Foundations of Multidimensional
and Metric Data Structures. Morgan
Kaufmann Publishers Inc., USA, 2005.

[15] T. Skopal. Unified framework for fast exact
and approximate search in dissimilarity
spaces. ACM Transactions on Database
Systems, 32(4):1-46, 2007.

[16] T. Skopal and T. Bartos. Algorithmic
Exploration of Axiom Spaces for Efficient
Similarity Search at Large Scale. In Similarity
Search and Applications, LNCS, 7404, pages
40-53. Springer, 2012.

[17] T. Skopal and B. Bustos. On nonmetric
similarity search problems in complex
domains. ACM Comp. Surv., 43:1-50, 2011.

[18] T. F. Smith and M. S. Waterman.
Identification of common molecular
subsequences. Journal of molecular biology,
147:195-197, 1981.

[19] D. Whitley. A genetic algorithm tutorial.
Statistics and computing, 4(2):65-85, 1994.

[20] P. Zezula, G. Amato, V. Dohnal, and
M. Batko. Similarity Search: The Metric
Space Approach. Advances in Database
Systems. Springer-Verlag, USA, 2005.

SIGMOD Record, June 2013 (Vol. 42, No. 2)



